Markscheme

May 2016

Mathematics

Higher level

Paper 2

This markscheme is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Assessment Centre.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a valid Method; working must be seen.
(M) Marks awarded for Method; may be implied by correct subsequent working.
$\boldsymbol{A} \quad$ Marks awarded for an Answer or for Accuracy; often dependent on preceding \boldsymbol{M} marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
$\boldsymbol{N} \quad$ Marks awarded for correct answers if no working shown.
AG Answer given in the question and so no marks are awarded.

Using the markscheme

General

Mark according to $\mathrm{RM}^{\text {TM }}$ Assessor instructions and the document "Mathematics HL: Guidance for e-marking May 2016". It is essential that you read this document before you start marking. In particular, please note the following.

Marks must be recorded using the annotation stamps. Please check that you are entering marks for the right question.

- If a part is completely correct, (and gains all the 'must be seen' marks), use the ticks with numbers to stamp full marks.
- If a part is completely wrong, stamp $\boldsymbol{A O}$ by the final answer.
- If a part gains anything else, it must be recorded using all the annotations.

All the marks will be added and recorded by $\mathrm{RM}^{\mathrm{TM}}$ Assessor.

Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is not possible to award M0 followed by $\boldsymbol{A 1}$, as \boldsymbol{A} mark(s) depend on the preceding \boldsymbol{M} mark(s), if any.
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, for example, M1A1, this usually means M1 for an attempt to use an appropriate method (for example, substitution into a formula) and A1 for using the correct values.
- Where the markscheme specifies (M2), N3, etc, do not split the marks.
- Once a correct answer to a question or part-question is seen, ignore further correct working. However, if further working indicates a lack of mathematical understanding do not award the final A1. An exception to this may be in numerical answers, where a correct exact value is followed by an incorrect decimal. However, if the incorrect decimal is carried through to a subsequent part, and correct $\boldsymbol{F T}$ working shown, award $\boldsymbol{F T}$ marks as appropriate but do not award the final $\boldsymbol{A 1}$ in that part.

Examples

	Correct answer seen	Further working seen	Action
1.	$8 \sqrt{2}$	$5.65685 \ldots$. (incorrect decimal value)	Award the final $\boldsymbol{A 1}$ (ignore the further working)
2.	$\frac{1}{4} \sin 4 x$	$\sin x$	Do not award the final $\boldsymbol{A 1}$
3.	$\log a-\log b$	$\log (a-b)$	Do not award the final $\boldsymbol{A 1}$

N marks

Award \mathbf{N} marks for correct answers where there is no working.

- Do not award a mixture of \boldsymbol{N} and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

Implied marks

Implied marks appear in brackets, for example, (M1), and can only be awarded if correct work is seen or if implied in subsequent working.

- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

Follow through marks

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s). To award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part.

- If the question becomes much simpler because of an error then use discretion to award fewer FT marks.
- If the error leads to an inappropriate value (for example, $\sin \theta=1.5$), do not award the mark(s) for the final answer(s).
- Within a question part, once an error is made, no further dependent \boldsymbol{A} marks can be awarded, but \boldsymbol{M} marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

6
 Misread

If a candidate incorrectly copies information from the question, this is a misread (MR).
A candidate should be penalized only once for a particular misread. Use the MR stamp to indicate that this has been a misread. Then deduct the first of the marks to be awarded, even if this is an M mark, but award all others so that the candidate only loses one mark.

- If the question becomes much simpler because of the $\boldsymbol{M R}$, then use discretion to award fewer marks.
- If the $\boldsymbol{M R}$ leads to an inappropriate value (for example, $\sin \theta=1.5$), do not award the mark(s) for the final answer(s).

$7 \quad$ Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

8 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by EITHER . . . OR.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).
Example: for differentiating $f(x)=2 \sin (5 x-3)$, the markscheme gives:

$$
\begin{equation*}
f^{\prime}(x)=(2 \cos (5 x-3)) 5 \quad(=10 \cos (5 x-3)) \tag{A1}
\end{equation*}
$$

Award $\boldsymbol{A} \mathbf{1}$ for $(2 \cos (5 x-3)) 5$, even if $10 \cos (5 x-3)$ is not seen.

10
 Accuracy of Answers

Candidates should NO LONGER be penalized for an accuracy error (AP).
If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures. Please check work carefully for FT.

11 Crossed out work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

12 Calculators

A GDC is required for paper 2, but calculators with symbolic manipulation features (for example, TI-89) are not allowed.

Calculator notation

The Mathematics HL guide says:
Students must always use correct mathematical notation, not calculator notation.
Do not accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

13 More than one solution

Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise.
14. Candidate work

Candidates are meant to write their answers to Section A on the question paper (QP), and Section B on answer booklets. Sometimes, they need more room for Section A, and use the booklet (and often comment to this effect on the QP), or write outside the box. This work should be marked.

The instructions tell candidates not to write on Section B of the QP. Thus they may well have done some rough work here which they assume will be ignored. If they have solutions on the answer booklets, there is no need to look at the QP. However, if there are whole questions or whole part solutions missing on answer booklets, please check to make sure that they are not on the QP, and if they are, mark those whole questions or whole part solutions that have not been written on answer booklets.

Section A

1. (a) $\overrightarrow{\mathrm{OA}} \times \overrightarrow{\mathrm{OB}}=\left(\begin{array}{c}4 \\ -4 \\ -2\end{array}\right)$
(M1)A1

Note: M1A0 can be awarded for attempt at a correct method shown, or correct method implied by the digits $4,4,2$ found in the correct order.
(b) \quad area $=\frac{1}{2} \sqrt{4^{2}+4^{2}+2^{2}}=3$

M1A1

[2 marks]
Total [4 marks]
2. (a) $(x+2)^{2}-6$
(b) $\quad(g \circ f)(x)=(x+2)^{2}-6$
(M1)
$\Rightarrow g(x)=x^{2}-6$
3. (a) $v=\frac{\mathrm{d} s}{\mathrm{~d} t}=\frac{\mathrm{e}^{-t}}{2-\mathrm{e}^{-t}}\left(=\frac{1}{2 \mathrm{e}^{t}-1}\right.$ or $\left.-1+\frac{2}{2-\mathrm{e}^{-t}}\right)$
(b) $\quad a=\frac{\mathrm{d}^{2} s}{\mathrm{~d} t^{2}}=\frac{-\mathrm{e}^{-t}\left(2-\mathrm{e}^{-t}\right)-\mathrm{e}^{-t} \times \mathrm{e}^{-t}}{\left(2-\mathrm{e}^{-t}\right)^{2}}\left(=\frac{-2 \mathrm{e}^{-t}}{\left(2-\mathrm{e}^{-t}\right)^{2}}\right)$

M1A1

Note:If simplified in part (a) award (M1)A1 for $a=\frac{\mathrm{d}^{2} s}{\mathrm{~d} t^{2}}=\frac{-2 \mathrm{e}^{t}}{\left(2 \mathrm{e}^{t}-1\right)^{2}}$.
Note: Award M1A1 for $a=-\mathrm{e}^{-t}\left(2-\mathrm{e}^{-t}\right)^{-2}\left(\mathrm{e}^{-t}\right)-\mathrm{e}^{-t}\left(2-\mathrm{e}^{-t}\right)^{-1}$.
[2 marks]
(c) $\quad a=-2\left(\mathrm{~ms}^{-2}\right)$

A1
[1 mark]
4. attempting to use the area of sector formula (including for a semicircle)

M1
semi-circle $\frac{1}{2} \pi \times 5^{2}=\frac{25 \pi}{2}=39.26990817 \ldots$
angle in smaller sector is $\pi-\theta$
area of sector $=\frac{1}{2} \times 2^{2} \times(\pi-\theta)$
attempt to total a sum of areas of regions to 44
$2(\pi-\theta)=44-39.26990817 \ldots$
$\theta=0.777\left(=\frac{29 \pi}{4}-22\right)$
Note: Award all marks except the final A1 for correct working in degrees.
Note: Attempt to solve with goat inside triangle should lead to nonsense answer and so should only receive a maximum of the two \boldsymbol{M} marks.
5. (a) $f(-x)=\frac{3(-x)^{2}+10}{(-x)^{2}-4}$

A1
$=\frac{3 x^{2}+10}{x^{2}-4}=f(x)$
$f(x)=f(-x)$
R1
hence this is an even function

Note: Award A1R1 for the statement, all the powers are even hence $f(x)=f(-x)$.
Note: Just stating all the powers are even is AORO.
Note: Do not accept arguments based on the symmetry of the graph.
(b) (i)

correct shape in 3 parts which are asymptotic and symmetrical
correct vertical asymptotes clear at 2 and -2
correct horizontal asymptote clear at 3

Question 5 continued
(ii) $\quad f(x)>3$
A1
$f(x) \leq-2.5$
A1
6. let the heights of the students be X
$\mathrm{P}(X<1.62)=0.4, \mathrm{P}(X>1.79)=0.25$
Note: Award $\boldsymbol{M 1}$ for either of the probabilities above.
$\mathrm{P}\left(Z<\frac{1.62-\mu}{\sigma}\right)=0.4, \mathrm{P}\left(Z<\frac{1.79-\mu}{\sigma}\right)=0.75$
Note: Award $\boldsymbol{M 1}$ for either of the expressions above.
$\frac{1.62-\mu}{\sigma}=-0.2533 \ldots, \frac{1.79-\mu}{\sigma}=0.6744 \ldots$
Note: A1 for both values correct.
$\mu=1.67(\mathrm{~m}), \sigma=0.183(\mathrm{~m})$
Note: Accept answers that round to 1.7(m) and 0.18(m).
Note: Accept answers in centimetres.
7. (a) $a=420.65$

A1
$390.94=a \times 2^{b} \quad$ M1
$2^{b}=\frac{390.94}{420.65}=0.929 \ldots$
A1

$$
b=-0.10567
$$

(b) $\quad N=8 T=337.67$

A1
Note: Accept 5sf answers between 337.44 and 337.67.
[1 mark]
(c) $\quad N=8$ Percentage error 1.29%

A1
Note: Accept negative values of the above.

Question 7 continued
(d) likely not to be a good fit for larger values of N likely to be quite a good fit for values close to 8
8. $a^{2}+4 a-b=2$

EITHER
$a^{2}+4 a-(b+2)=0$
as a is real $\Rightarrow 16+4(b+2) \geq 0$
OR
$b=a^{2}+4 a-2$
M1
$=(a+2)^{2}-6$

THEN

$b \geq-6$
hence smallest possible value for b is -6
A1
9. (a) other two roots are $c-\mathrm{i}$ and $2-\mathrm{i} d$

A1
[1 mark]
(b) METHOD 1
use of sum of roots
$2 c+4=10$
$c=3$
A1
use of product of roots M1
product is $(c+\mathrm{i})(c-\mathrm{i})(2+\mathrm{i} d)(2-\mathrm{i} d) \quad$ A1
$\left(c^{2}+1\right)\left(4+d^{2}\right)\left[=10\left(4+d^{2}\right)\right]=50$
Note: The line above can be awarded if they have used their value of c.

$$
d=1
$$

continued...

Question 9 continued

METHOD 2

$$
\begin{aligned}
& z^{4}-10 z^{3}+a z^{2}+b z+50=\left(z^{2}-2 c z+c^{2}+1\right)\left(z^{2}-4 z+4+d^{2}\right) \\
& \text { compare constant terms or coefficients of } z^{3} \\
& 4+2 c=10 \\
& \left(c^{2}+1\right)\left(4+d^{2}\right)=50 \\
& c=3, d=1
\end{aligned}
$$

10. $\mathrm{P}(3$ in the first hour $)=\frac{\lambda^{3} e^{-\lambda}}{3!}$

A1
number to arrive in the four hours follows $\operatorname{Po}(4 \lambda)$
M1
$\mathrm{P}(5$ arrive in total $)=\frac{(4 \lambda)^{5} e^{-4 \lambda}}{5!}$
A1
attempt to find P (2 arrive in the next three hours) M1
$=\frac{(3 \lambda)^{2} e^{-3 \lambda}}{2!}$
A1
use of conditional probability formula
M1
$\mathrm{P}(3$ in the first hour given 5 in total $)=\frac{\frac{\lambda^{3} e^{-\lambda}}{3!} \times \frac{(3 \lambda)^{2} e^{-3 \lambda}}{2!}}{\frac{(4 \lambda)^{5} e^{-4 \lambda}}{5!}}$

Section B

11. (a) valid method eg, sketch of curve or critical values found
$x<-2.24, x>2.24$,
$-1<x<0.8$
A1
Note: Award M1A1AO for correct intervals but with inclusive inequalities.
[3 marks]
(b) (i) $(1.67,-5.14),(-1.74,-3.71)$

A1A1
Note: Award A1A0 for any two correct terms.
(ii) $\quad f^{\prime}(x)=4 x^{3}+0.6 x^{2}-11.6 x-1$
$f^{\prime \prime}(x)=12 x^{2}+1.2 x-11.6=0$
$-1.03,0.934$
A1A1
Note: M1 should be awarded if graphical method to find zeros of $f^{\prime \prime}(x)$ or turning points of $f^{\prime}(x)$ is shown.
(c) (i) 1.67

A1
(ii)

M1A1A1
Note: Award M1 for reflection of their $y=f(x)$ in the line $y=x$ provided their f is one-one.
$\boldsymbol{A 1}$ for (0,4), (4,0) (Accept axis intercept values) $\boldsymbol{A} 1$ for the other two sets of coordinates of other end points
(iii) $\quad x=f(1)$

M1
$=-1.6$

Question 11 continued
(d) (i) $y=2 \sin (x-1)-3$
$x=2 \sin (y-1)-3$
$\left(g^{-1}(x)=\right) \arcsin \left(\frac{x+3}{2}\right)+1$
$-5 \leq x \leq-1$
A1A1
Note: Award A1 for -5 and -1 , and $\boldsymbol{A 1}$ for correct inequalities if numbers are reasonable.
(ii) $\quad f^{-1}(g(x))<1$
$g(x)>-1.6$
$x>g^{-1}(-1.6)=1.78$
Note: Accept $=$ in the above.
$1.78<x \leq \frac{\pi}{2}+1$
A1A1

Note: A1 for $x>1.78$ (allow \geq) and $\boldsymbol{A 1}$ for $x \leq \frac{\pi}{2}+1$.

Total [22 marks]
12. (a) $a^{2}=5-1$
$a=2$
(b) $\quad 2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}-\left(2 x \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 y\right)=-\mathrm{e}^{x}$

Note: Award M1 for an attempt at implicit differentiation, A1 for each part.

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2 y-\mathrm{e}^{x}}{2(y-x)}
$$

(c) at $x=0, \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{3}{4}$
finding the negative reciprocal of a number
gradient of normal is $-\frac{4}{3}$
$y=-\frac{4}{3} x+2$

Question 12 continued
(d) substituting linear expression
$\left(-\frac{4}{x}+2\right)^{2}-2 x\left(-\frac{4}{3} x+2\right)+\mathrm{e}^{x}-5=0$ or equivalent
$x=1.56$
(M1)A1
$y=-0.0779$
A1
(1.56, - 0.0779)
(e) $\frac{\mathrm{d} v}{\mathrm{~d} x}=3 y^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}$

M1A1
$\frac{\mathrm{d} v}{\mathrm{~d} x}=3 \times 4 \times \frac{3}{4}=9$

Total [16 marks]

13. (a) $\mathrm{E}(X)=1 \times \frac{1}{6}+2 \times \frac{2}{6}+3 \times \frac{3}{6}=\frac{14}{6}\left(=\frac{7}{3}=2.33\right)$
(M1)A1
(b) (i) $3 \times \mathrm{P}(113)+3 \times \mathrm{P}(122)$

$$
3 \times \frac{1}{6} \times \frac{1}{6} \times \frac{1}{2}+3 \times \frac{1}{6} \times \frac{1}{3} \times \frac{1}{3}=\frac{7}{72}(=0.0972)
$$

Note: Award $\boldsymbol{M} \mathbf{1}$ for attempt to find at least four of the cases.
(ii) recognising 111 as a possibility (implied by $\frac{1}{216}$)
recognising 112 and 113 as possibilities (implied by $\frac{2}{216}$ and $\frac{3}{216}$)
seeing the three arrangements of 112 and 113

$$
\begin{aligned}
& \mathrm{P}(111)+3 \times \mathrm{P}(112)+3 \times \mathrm{P}(113) \\
& =\frac{1}{216}+\frac{6}{216}+\frac{9}{216}=\frac{16}{216}\left(=\frac{2}{27}=0.0741\right)
\end{aligned}
$$

Question 13 continued
(c) let the number of twos be $X, X \sim B\left(10, \frac{1}{3}\right)$
(M1)
(M1)A1
[3 marks]
(d) let n be the number of balls drawn
$\mathrm{P}(X \geq 1)=1-\mathrm{P}(X=0)$
M1
$=1-\left(\frac{2}{3}\right)^{n}>0.95$
$\left(\frac{2}{3}\right)^{n}<0.05$
$n=8$
A1
[3 marks]
(e) $8 p_{1}=4.8 \Rightarrow p_{1}=\frac{3}{5}$
(M1)A1
$8 p_{2}\left(1-p_{2}\right)=1.5$
(M1)
$p_{2}^{2}-p_{2}-0.1875=0$
(M1)
$p_{2}=\frac{1}{4}\left(\right.$ or $\left.\frac{3}{4}\right)$
A1
reject $\frac{3}{4}$ as it gives a total greater than one
$\mathrm{P}(1$ or 2$)=\frac{17}{20}$ or $\mathrm{P}(3)=\frac{3}{20}$
recognising LCM as 20 so min total number is 20
the least possible number of 3 's is 3

